Predicates of Taste are Relativized to Kinds

I. A NORMATIVITY PUZZLE. A lively literature has recently sprung up surrounding predicates of taste (POTs), in part based upon Koebel’s (2003) problem of faultless disagreement: the ability of seemingly first-personal, subjective ascriptions of judgment to be described as a conversational disagreement (1). Broadly speaking, three classes of proposals exist: a) relativization to Sells’s (1987) perspectival component in the evaluation sequence (Lasersohn, 2005; Egan et al., 2005; Macfarlane, 2006) (2a); b) covert argument counterparts of overt experiencers (Bhatt and Izvorski, 1998; Stephenson, 2007; Stojanovic, 2008) (2b); and c) generic quantification over a hidden experiencer arguments (Bhatt and Izvorski, 1998; Moltmann, 2006; Keshet, 2005) (2c).

While the three approaches differ in how they account for Faultless Disagreement, they all predict that POTs with overt experiencers should not trigger disagreement (as it is how the covert/generic experiencer is resolved that makes a first-personal ascription community-wide). This is not correct. In contrast with their psych-predicate cousins (3a), POTs with overt experiencers continue to trigger Koebel’s pattern (3b). This fact, we argue, shows that POTs inherently encode normativity. In line with response-dependent conceptions of color (Averill, 1985) and ethics (Firth, 1952; McDowell, 1985), we propose that POTs impose normative standards on the responses normal perceivers (4), rendering POTs inherently objective, contra Koebel’s faultlessness. We further argue that POTs are evaluated with respect to salient, contextually-provided kinds (cf. Glanzberg 2007 and Egan 2007). This explains the allowance of apparent exocentric readings of POTs (Lasersohn, 2005), which are always to kinds excluding the speaker (i.e., children and animals), and thus defuses Lasersohn’s argument from weak crossover. Overt experiencers are then not arguments of POTs, but coerced functors which provide a non-monotonic inference that that the experiencer’s perception is grounds for her belief of judgment universality (5).

II. POTs AND De Se. Recent literature has claimed that POTs are obligatorily interpreted de se in attitudinal contexts (Anand, 2006; Moltmann, 2006; Stephenson, 2007; Lasersohn, to appear) (6). However, such judgments are crucially mediated by kind-membership and genericity. Insofar as a person either a) deems herself exceptional from the kind, (7), or b) does not have de se belief of kind membership, (8), the relevant attitude is still felicitous, even though de se subjective judgment has been controlled for. The same reasoning resolves puzzling ellipsis data that force Stephenson to assume a blocking effect for covert pronouns (9a). Insofar as Mary self-identifies with Sam’s kind, she cannot believe the tuna tasty for Sam’s kind without it triggering tastiness for her (modulo exceptionality). Indeed, when we break normal assumptions of mutual kind-membership, the allegedly impossible strict interpretation is the most natural (9b).

III. PROJECTION FROM FACTIVES. As Lasersohn (to appear) notes, his perspectival evaluation approach allows both autocentric and exocentric interpretations of presupposed POTs via (mis)matching of the embedded and matrix contexts’ judges (10). However, this approach predicts that sentences containing autocentrically interpreted matrix POTs cannot have factives that project exocentrically, as the matrix judge is set by the context of utterance to the speaker. This is incorrect (11). In addition, as the judges of the presupposed and asserted propositions are independent, Lasersohn’s theory never requires that the attitude holder’s self-assessment is correct, allowing unattested readings (12). We argue that the asserted and presupposed presuppositions are identical: that the cat food is tasty for the relevant kind; “autocentricity” of presupposition is simply determined by whether the speaker self-identifies with the kind in question.

IV. OUTLOOK. We have argued that POTs should be analyzed as normative response-dependent
predicates, relativized to kinds. This allows straightforward analysis of Faultless Disagreement and
the evaluation of POTs in attitudinal environments. However, it does not capture Anand’s (2007)
cases of multiple judges (13a). Note, however, that while multiple judges are even possible for
contradictory POTs (13b), they are not possible if the POTs are predicated of the same head (13c),
a fact parallel to the Head Primacy Principle of (Kamp and Partee, 1995) (where the head affects
the context of evaluation for the modifier). Given (13a), we propose that the context thus makes
available one judging kind per category of judgment (i.e. TASTE, BEAUTY, MORAL GOODNESS,
see Jackendoff 2006), which is subject to update in the process of evaluation (Condoravdi and
Gawron, 1996), hence allowing quantificationally determined kinds (14).

(1) X: That ride was fun. Y: No it wasn’t!
(2) a. That ride was fun; [fun]$^c,i,g = [\text{fun for JUDGE}(i)]^{c,i,g}$
b. That ride was [fun proi]; [fun proi]$^c,i,g = [\text{fun for } x_i]^{c,i,g}$
c. GEN, That ride was [fun x_i]
(3) a. X: This bores me. Y: ?But you’re wrong. It’s not boring.
b. X: {This is boring for me, I find this boring}. Y: But you’re wrong. It’s not boring.
(4) [tasty]$^{c,i,g} = \lambda z : \exists ! P[\forall x_e[P(x) \Rightarrow GEN_{a,s}[\text{normal}(a)(s) \wedge a \leq TASTE(c)][\text{tastiness}(a)(s)]]].$
iP[...](z), (z possesses the property that causes TASTE(c) perceivers to perceive tastiness.)
(5) [for]$^{c,i,g} = \lambda x \lambda P \lambda z. \text{PERC}(x, P, z) \wedge \forall x' \forall P' \forall z'[\text{PERC}(x', P', z') \Rightarrow \forall w \in DOX_{x',i}P'(z')(w) = 1].$, where \(>\) is Asher’s (1995) Commonsense Entailment and \text{PERC}(x, P, z) holds iff there is a perceptual response (e.g., tastiness) corresponding to the POT \(P\) by \(x\) of \(z\).
(6) John thinks: \{\text{S}_1: “This problem was hard.”; \text{S}_2: “This problem was hard for him.”\}
John thinks problem #2 was hard. [✓ \text{S}_1, #\text{S}_2] (Anand, 2006)
(7) John considers himself exceptional, but notes that many people did badly on problem #2.
John thought problem #2 was hard, although he knew it wasn’t hard for him.
(8) John knows bees are dangerous [for those allergic]; he just doesn’t know he’s allergic.
(9) a. Sam thinks that the tuna is tasty, and Mary does \langle \ldots \text{tasty for } \{\text{her, *Sam}\}\rangle too.
b. The cat thinks that the tuna is tasty, and Mary does \langle \ldots \text{tasty for } \{\text{her, the cat}\}\rangle too.
(10) John: The cat knows that the tuna is tasty. proposition: \(\lambda i. \text{tasty-for}(\text{cat})(tuna)(i)\)
matrix context: \langle \text{cat, } w \circ, t @ \rangle; presupposition: \text{tasty-for(\text{cat})(tuna})(i)=1
matrix context: \langle \text{John, } w \circ, t @ \rangle; presupposition: \text{tasty-for(\text{John})(tuna})(i)=1
(11) The cat is cute [for me] and now he knows that his food is tasty [for him].
(12) The student knows that this problem is easy.
Presupposes: The problem is easy for the speaker. (autocentric) [but student]
Asserts: The student thinks that this problem is easy for her. (autocentric) [but she’s wrong]
(13) a. I think the cat food was tasty (for cats) and pleasant-looking (for humans). (Anand, 2007)
b. The cat food was tasty (for cats) but the dog food wasn’t (for dogs).
c. The rollercoaster was fun (#for adults) and boring (#for children).
(14) Each woman bought her pet a fun toy at her local supermarket.