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Reliably collect and analyze micro-judgments of sociolinguistic
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Our goal

This tutorial is about getting and analyzing sociolinguistic perception
data. The projects I’m going to talk about are focused on what I’m
calling micro-judgments, where participants get a very small amount
of linguistic material ad make one relatively simple judgment. The
issues that we’re dealing with, though, are liking to apply to more
complex evaluative tasks.
I’ll be talking about four different studies, in different stages of
completion, which use or will use these methods. I won’t get into too
much detail on each one, but instead will be focusing on two of the
common dimensions: tools for collecting and tools for analyzing these
kinds of data.
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Pin vs. pen

Listeners can reorganize lexical competition on the fly to
reflect speaker variation (Dahan et al., 2008, e.g.)
Sociolinguistic expectations, triggered by photos, can
influence linguistic processing (Hay et al., 2006;
Staum Casasanto, 2008)

Do sociolinguistic expectations regarding race and/or class shift
patterns of eye-tracking based on the pin/pen merger? If so,
does adaptation based on direct exposure to speech eliminate
or mitigate that effect?

Which tokens are more or less ambiguous? Which speakers
are more or less merged?
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This project is a collaboration between Kiwako Ito and Kathryn
Campbell-Kibler. A new branch of it with Mary Beckman and Liz
McCullough, looking at the production data of the eyetracking
participants will be discussed tomorrow in Tutorial 3.
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Face-voice connections

Visual representation of faces integrate with voice-based
social information (Campanella & Belin, 2007; de Gelder
et al., 2002; Williams et al., 1976)
Combining tasks which align conscious and automatic
processes with those which oppose them (process
dissociation) can illuminate their relationship (Jacoby,
1991; Payne, 2005; Payne & Stewart, 2007)

Do social evaluations of faces and voices differ when presented
in isolation, combined as a purportedly single person or simply
co-presented?
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just begun. Pilot data on male faces has been collected.
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Foreign accent

Information in the speech signal alone can lead listeners to
make social judgments. (Purnell et al., 1999)
Social judgments regarding non-native speakers are
common and often harsh. (Brennan & Brennan, 1981;
Gluszek & Dovidio, 2010; Kinzler et al., 2007)

How do US English native speakers assess degree of foreign
accent across multiple L1 backgrounds? What acoustic
properties influence their assessments?
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Sibilants and gender

Several languages show gendering of /s/ and/or /S/:
English (Campbell-Kibler, 2011; Crist, 1997; Linville, 1998)
Danish (Pharao and colleagues, in progress)
Mandarin (Hu, 1991; Li, 2005)
Japanese (Chew, 1969)

Goes the other way!
Do listeners apply their own language’s mapping when hearing
speakers of other languages? Does it matter if it’s the more or
less common mapping? How can these perceptions illuminate
or be illuminated by the production and acquisition patterns
discussed in Tutorial 1?
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on this phase.
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The first half of our problem is collecting appropriate data. Several
tools have been used for this. Because we’re discussing across
multiple projects, we’ll skip over the issues of question design that
would distinguish, say, a semantic differential from a Likert scale. Our
question here is the task given to the participant to conceptualize and
convey their assessment.
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Problem 1: Data collection

We have chosen the VAS for a few reasons. The continuous nature is
particularly valuable because it enables analysis of patterns of
individual responses, for example to ask whether a given listener is
showing a unimodal or bimodal pattern, or to correlate responses
from a single participant or two a single stimulus with other measures,
e.g. IAT scores or formant measures. The “simple to explain and use”
aspect has been field-tested by Heather Buchan, at the University of
Wollongong who is working on acquisition of Gurundji Kriol and has
used VAS with non-literate speakers with success.



Populations

Subject pool (In person)
Closer control/observation
Free (if you have one)
Longer tasks possible
Wide range of tools possible
Limited population

Mechanical Turk
Wider demographics
Low cost
Less control
Higher non-completion
Limited to online interface
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We are collecting data in two venues: in the lab with a subject pool
and on Mechanical Turk.
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PsyScope — http://psy.ck.sissa.it/
OpenSesame —
http://www.cogsci.nl/software/opensesame



In-lab tools

E-Prime — http://www.pstnet.com/eprime.cfm
PsyScope — http://psy.ck.sissa.it/
OpenSesame —
http://www.cogsci.nl/software/opensesame

20
12

-0
5-

28
Collecting sociolinguistic micro-judgments of acoustic cues
online

Goals

In-lab tools

In person, we can use a wide range of tools, including paper and
pencil tasks, face-to-face interviews, etc. For a VAS task, however, a
computer interface is likely to our most reliable bet. There are a
number of reliable suites out there. We’ve used E-Prime, but would
like to hear others’ preferences. There is a significant time and
sometimes money cost associated with switching and E-Prime is a
major choice at least in part because it’s what we have! Here’s a look
at the tasks.
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Pin vs. pen: E-Prime

Here’s the slide we used for the pin vs. pen task.



Face-voice connections



Face-voice connections

20
12

-0
5-

28
Collecting sociolinguistic micro-judgments of acoustic cues
online

Goals

Face-voice connections

Face photos like this were rated for how accented, masculine, and
educated they looked.
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Foreign accent: E-Prime

This paradigm uses clips of non-native English speech.
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Multiple-choice & radio buttons
Ranking
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LimeSurvey

We’re still arguing with LimeSurvey to get it to talk nicely to mTurk.
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Sibilants and gender: LimeSurvey

So here’s what our LimeSurvey question looks like. This appears
within the Mechanical Turk frame:
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Problem 2

One you’ve collected your data, you have a pile of data! It turns out
that data of these types, when collected using VAS, are somewhat
funky-shaped piles.
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Pin/pen merger

The pin/pen data distribution. The three modes suggest that we did a
good job of getting some merged and some non-merged speakers.
But if we want to do some modeling to see, for example, how formant
values predict the responses, it makes things challenging.
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Face-voice connections

Two is a bit better than three, but still a challenge. Note also that the
two modes are closer to the center than the outer modes for pin/pen.
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Foreign accent

And here.
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Possible approaches

So there are a few things we can do with these. One is that we can
pretend that they are normally distributed even though they’re not.
This is really a stretch, given both the boundedness and the
multi-modality. We can deal with the bounded issue by standardizing
to 0-1 and taking the logit (log-odds) or by treating the distribution as
a beta distribution. For multi-modal distributions, however, something
else is needed, like a mixture model. Note that the type of distribution
(e.g. normal, beta, etc) and number of underlying distributions are
two different issues.
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Beta regression

Beta regression has been increasingly used in social science
statistics, due to the prevalence of probability or probability-like
distributions, e.g. poverty rates in a city. Beta distributions have two
parameters (α and β) which do not straightforwardly map to
real-world parameters of interest but variants on beta regression have
been develop which estimate a mean and a dispersion parameter ().
For certain types of VAS tasks, a beta distribution is likely to be very
useful, given its range between a more central unimodal shape and a
bimodal shape with the modes at the extremes.
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Beta regression

The R package betareg with perform beta regression to estimate
mean and dispersion parameters. It’s not able to manage mixed
effects models (or mixture models), but there is code for BUGS
(Bayesian inference Using Gibbs Sampling) which will do
mixed-effects beta regression.



Finite Mixture Models
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Finite Mixture Models

I know very little about finite mixture models, or their various cousins.
But they seem like they might be a good choice here.



Finite Mixture Models

Captures multi-modal character
Intuitively plausible treatment: Participants are
categorizing, then tinkering
Characteristics depend on sub-distributions



Beta Mixture Models

Best of both worlds?
People in genomics like it!
. . . ?



Our Questions

Where might micro-social judgments be most useful? Where
does their utility stop?

How can we maximize reliability and ecological validity
given that we’re only asking one question?
What are the limits on how many times this task can be
performed meaningfully?



Our Questions

How can researchers implement socio-friendly, experimentally
sound studies online with a minimum of (previous)
programming expertise?

What would an ideal interface look like?
How can we achieve it easily?
Can existing tools be expanded to meet our needs?



Our Questions

What are the most effective tools for analyzing VAS data?
How can we capture the multi-modality?
Should we transform the data to manage the bounded
distributions or is a beta distribution the right choice?
How accessible are the possibly right tools (e.g. finite
mixture models)?
Are there ways we can help others understand and use
them? (After we help ourselves do so!)
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